
558 

Acta Cryst. (1989). A45, 558-563 

New Surface Patches for Minimal Balance Surfaces. 
IV. Catenoids with Spout-Like Attachments 

BY ELKE KOCH AND WERNER FISCHER 

Institut fdr Mineralogie der Universitiit Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, 
Federal Republic of Germany 

(Received 13 December 1988; accepted 16 March 1989) 

Abstract 

The way in which Schoen [Infinite Periodic Minimal 
Surfaces Without Self-intersections (1970), NASA 
Tech. Note No. D-5541] derived a simply connected 
surface patch for a C(H) surface cannot be general- 
ized. One may, however, subdivide a C(H) surface 
into larger patches that are not simply connected. 
Surface patches of analogous shape give rise to five 
families of minimal balance surfaces unknown so far: 
tetragonally and orthorhombically distorted C(P) 
surfaces, surfaces complementary to Schoen's R2 and 
R3 surfaces with genus 25 and 37, respectively, and 
orthorhombic surfaces of a fifth family with genus 5 
that are also complementary to oP surfaces. 

1. Schoen's C(H) surfaces 

Schoen (1970) described a family of minimal balance 
surfaces C(H) complementary to the H surfaces of 
Schwarz (1890). He derived a surface patch o fa  C(H) 
surface by deformation of a suitably chosen surface 
patch o f a  C(P) surface (Neovius, 1883). For this he 
started with a cube formed by six mirror planes. It 
delimits a disc-like patch of a C(P) surface that is 
bounded by 12 plane lines of curvature, two of them 
on each face of the cube. The point group of such a 
surface patch is .]m. The threefold rotation axis runs 
perpendicular to the surface patch, each of the three 
twofold axes bisects two opposite edges, and each of 
the three mirror planes contains two of the further 
six edges of the cube. 

According to Schoen (1970) one may construct an 
analogous surface patch within a prism with a rhom- 
bus as cross-sectional view (rhombus angles of 60, 
120°). The faces of such a prism also may be formed 
by mirror planes giving rise to hexagonal symmetry. 
The point group of the resulting surface patch (Fig. 
1) is reduced to 2/m compared with that of a C(P) 
surface. The twofold axis runs through the midpoints 
of the two 60 ° edges of the prism, while the mirror 
plane contains the two 120 ° edges. Such a surface 
patch may be extended by reflection at the prism 
faces. The resulting minimal balance surface was 
designated C(H) by Schoen (1970) because it shows 
the same inherent symmetry P63/mmc-P6m2 and, 
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therefore, the same linear skeletal net as an H surface. 
The genus of a C(H) surface is 7. 

Schoen's derivation emphasizes the mirror planes 
and the plane lines of curvature of a C(H) surface. 
On the other hand, it is possible to choose larger 
surface patches which stress the twofold axes and the 
linear skeletal net. Such a view of the C(H) surfaces 
is more similar to that used in previous papers of the 
present authors (Fischer & Koch, 1987, 1989a, b; 
Koch & Fischer, 1988, 1989). 

The common linear skeletal net of an H and a 
C(H) surface disintegrates into plane nets of equi- 
lateral triangles stacked directly upon each other. 
Referred to the H surface two kinds of triangle pairs 
are formed within these triangular nets, namely those 
which are generating circuits for catenoid-like surface 
patches and those which are not (cf. Koch & Fischer, 
1988). Pairs of the latter kind may be related to more 
complicated surface patches of the H surface which 
are, therefore, less useful than the catenoids. Such a 
more complicated surface patch consists of three disc- 
like fragments without common boundaries. Each 
fragment corresponds to the third part of a catenoid 
and has four boundary lines: two triangle edges and 
two plane lines of curvature connecting the triangle 
vertices. Each two of these fragments share two 
triangle vertices. 

Fig. 1. Disc-like surface patch ofa C(H) surface as described by 
Schoen (1970). 
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Both kinds of surface patches are delimited by 
space-filling hexagonal prisms. Six vertices of such a 
prism correspond to the vertices of the triangle pair 
under consideration, and the prism axis runs through 
the triangle centres. The rectangular prism faces are 
formed by mirror planes of the surface. A surface 
patch may be continued either by the reflections 
corresponding to the prism faces or by the twofold 
rotations that refer to the triangle edges. The reflec- 
tions, however, are not necessary to generate the 
complete surface. Although both kinds of hexagonal 
prisms give rise to a space tiling the prisms share only 
entire rectangular faces whereas each hexagonal face 
is in contact with three hexagonal faces of other 
prisms. 

Similarly, a C ( H )  surface may be subdivided into 
two kinds of surface patches that are larger than those 
described by Schoen (1970): 

(1) The catenoid-like surface patches of an H sur- 
face correspond to catenoids with three spout-like 
attachments. The point group 6m2 of such a surface 
patch is the same as for the catenoids. The central 
lines of the spouts have site symmetry mm2 and run 
through the midpoints between two opposite triangle 
edges. Fig. 2 shows the lower half of such a surface 
patch. The entire patch has 12 boundary lines: the 
two triangles in the hexagonal prism faces and six 
plane lines of curvature within the six rectangular 
prism faces. Spouts of three neighbouring catenoids 
are united to three-armed handles. The central axes 
of these handles coincide with those prism edges that 
do not run through triangle vertices. Consequently, 
each catenoid is connected to six neighbouring 
catenoids via three of these three-armed handles. 

(2) The other triangle pairs within a C ( H )  surface 
belong to surface patches, the inner parts of which 
resemble catenoids with three ends. The correspond- 
ing point group is also 6m2, and the three ends point 
to the midpoints between opposite triangle edges, too. 
The symmetry in these directions is mm2. Fig. 3 
represents the lower half of such a surface patch. The 

Fig. 3. Lower half of a catenoid with three ends, /.e. of a C(H) 
surface patch. 

(a) 

Fig. 2. Lower half of a catenoid with three spout-like attachments, 
i.e. of a C(H) surface patch. 

(b) 

Fig. 4. Model ofa C(H) surface: (a) viewed along c, (b) oblique 
view. 
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entire patch is bounded by 12 lines, two triangles 
within the hexagonal prism faces and six plane lines 
of curvature within the rectangular prism faces. Each 
of the three ends has two opposite triangle edges as 
boundaries and two plane lines of curvature which 
connect opposite triangle vertices. Therefore, each 
two of the three ends have two triangle vertices in 
common. 

The main difference between an H surface (or a 
surface consisting of multiple catenoids) and a C(H)  
surface (cf. Figs. 4 and 5) is as follows: If  a surface 
is cut along all twofold axes forming its linear skeletal 
net, an H surface (or an MC surface) falls into finite 
pieces, the catenoids (or the multiple catenoids). In 
contrast to this, a C(H)  surface decomposes into 
two-dimensional infinite pieces with layer-group sym- 
metry and bounded by two triangular nets of twofold 
axes. 

2.  M i n i m a l  b a l a n c e  s u r f a c e s  C ( R 2 )  

The inherent symmetry of Schoen's (1970) R2 surface 
is I4/mcm-P4/mbm. The linear skeletal net disin- 
tegrates into an infinite set of parallel plane triangular 
nets (angles: 45, 45, 90 ° ) stacked directly upon each 
other. As described for H surfaces the linear skeletal 
net of an R2 surface contains two kinds of triangle 
pairs that correspond to two different kinds of surface 
patches: catenoids bounded by two triangles and 
surface patches consisting of three disc-like frag- 
ments. In contrast to H surfaces these fragments have 
two triangle edges as boundary lines and two other 
lines, one or both of which are not plane lines of 
curvature because of the absence of corresponding 
mirror planes in the symmetry of R2 surfaces. The 
three fragments share the vertices of the triangles. 
The further lines connect neighbouring vertices of the 

triangles and may partly be chosen with some 
arbitrariness, e.g. as geodesics, but the point symmetry 
m.m2 of R2 surface patches has to be obeyed. There- 
fore, two fragments with symmetry m.. have to be 
congruent, whereas the third one must show sym- 
metry m.m2. 

As described above for C(H)  surface patches one 
can derive surface patches for a new family of 
minimal balance surfaces from those of R2 surfaces. 

The R2 catenoids correspond to catenoids with 
three spout-like attachments and point symmetry 
m.m2. In contrast to C(H)  surfaces these spouts 
can only partly be bounded by plane lines of cur- 
vature. Again three spouts are united to three-armed 
handles, but each catenoid is connected only to five 
other catenoids by three of these handles. Two 
catenoids sharing the 90 ° vertices of their triangle 
pairs are connected twice. 

The second kind of surface patches of an R2 sur- 
face refers to catenoids with three ends and symmetry 
re.m2. Each end is bounded by two triangle edges 
and two further lines that connect opposite triangle 
vertices but partly are not plane lines of curvature. 
The three ends coincide in their triangle vertices. 

Both surface patches may be continued with the 
aid of the twofold axes forming the triangle pairs (cf. 
Fig. 6). The free boundaries must be chosen such that 
the spouts of neighbouring catenoids stick together 
and the free boundaries of the catenoids with three 
ends coincide. 

The resulting minimal surfaces have the same 
inherent symmetry I4/mcm-P4/mbm as the R2 sur- 
faces and, therefore, they are complementary to R2 
surfaces and will be designated C(R2).  As has been 
shown before they are complementary also to MC6 
and MC7 surfaces (Koch & Fischer, 1989). Their 
genus is comparatively high, namely 25, whereas the 
genus of R2, MC6 and MC7 surfaces is only 9. 

Fig. 5. Part of a C(H) surface spanned by two adjacent nets of Fig. 6. Part of  a C(R2) surface spanned by two adjacent nets of 
twofold axes. twofold axes. 
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3. Minimal balance surfaces C(R3)  

R3 surfaces (Schoen, 1970) have inherent symmetry 
P6/mcc-P6/m. Their linear skeletal nets consist also 
of parallel plane triangular nets (angles: 30, 60, 90 ° ) 
stacked directly upon each other. Again two kinds of 
triangle pairs exist within the linear skeletal net of 
an R3 surface giving rise to two kinds of surface 
patches with symmetry m.., namely catenoids and 
others consisting of three disc-like fragments which 
coincide in the vertices of the triangles. All three 
fragments have symmetry m.. but differ in their shape. 
As for R2 surfaces each fragment is bounded by two 
triangle edges and two additional free boundary lines, 
e.g. geodesics, connecting opposite triangle vertices. 

In analogy to C ( H )  and C(R2)  surfaces, more 
complicated surface patches with symmetry m.. may 
be formed which may be used to generate minimal 
balance surfaces of a second new family: 

(1) Catenoids with three spout-like attachments 
are bounded by the triangles of a pair and by six 
additional free lines (e.g. geodesics). Three spouts 
form together a three-armed handle so that each 
catenoid is connected to five neighbouring ones. 
Catenoids which share the 90 ° vertices of their 
triangles are connected twice in analogy to C(R2)  
surfaces. 

(2) Catenoids with three ends may be formed, too. 
Their three different boundaries correspond to those 
of the second kind of patches of R3 surfaces. 

The resulting minimal balance surfaces have the 
same inherent symmetry P6/mcc-P6/m as R3 sur- 
faces. They are complementary to R3 surfaces and 
will therefore be designated C(R3)  (cf. Fig. 7). In 
addition, C(R3)  surfaces are complementary to 
MC2, MC3 and MC4 surfaces (Koch & Fischer, 
1989). Their genus is very high, namely 37, whereas 
the genus of the said complementary surfaces is 
only 13. 

4. Minimal balance surfaces tC(P) and oC(P) 
tP and oP surfaces may be regarded as tetragonally 
or orthorhombically distorted cubic P surfaces 
(Schoen, 1970). Their inherent symmetry is I4 /mmm-  
P4 /mmm and Fmmm-Cmmm, respectively. Infinite 
sets of parallel plane square (or rectangular) nets 
stacked directly upon each other form the respective 
linear skeletal nets. These nets contain two kinds of 
pairs of squares (or rectangles) with respect to a tP 
(oP) surface. Pairs of one kind correspond to 
catenoid-like surface patches, those of the other kind 
to surface patches consisting of four disc-like frag- 
ments each. A fragment is bounded by two quadrangle 
edges and by two further lines which are - in the case 
of tegragonal symmet ry -p lane  lines of curvature. 
Adjacent fragments share two vertices of the quad- 
rangles. The symmetry of the surface patches is 
4/ mmm for tP and mmm for oP surfaces. 

The hexagonal prisms described above for H and 
C ( H )  surfaces correspond to tetragonal prisms that 
enclose tP surface patches. The rectangular prism 
faces are formed by mirror planes .mr, the square 
faces contain the square nets of twofold axes. The 
vertices of the square nets coincide with the midpoints 
of the edges of the square prism faces. All boundaries 
of the catenoid-like surface patches refer to the square 
prism faces; the other surface patches show eight 
additional boundaries, two of them on each rec- 
tangular prism face. Adjacent prisms share entire 
rectangular faces, but only one quarter of their square 
faces. 

In analogy to the derivation of C ( H ) ,  C(R2)  and 
C(R3)  surfaces one may construct patches of surfaces 
that are complementary to tP or oP surfaces and 
show the same inherent symmetry: 

(1) The catenoid-like surface patches give rise to 
more complicated ones that can be imagined as 
catenoids with four spouts attached. Their symmetry 
is 4 /mmm and mmm, respectively, that of the spouts 
is re.m2 in the tetragonai case and 2mm or m2m in 
the orthorhombic case. For tetragonal surfaces each 
spout is bounded by two plane lines of curvature on 
two neighbouring prism faces. Four spouts belonging 
to four neighbouring catenoids are united to a four- 
armed handle with symmetry 4/mmm or mmm, 
respectively. As a consequence, each catenoid is con- 
nected to eight neighbouring ones via four four- 
armed handles. Four of these catenoids share vertices 
of the quadrangular nets with the original one and 
are connected twice. The other four have a larger 
distance and are connected only once. 

(2) The surface patches of tP and oP surfaces 
made up from four fragments give rise to more com- 
plicated ones, the inner parts of which are similar to 
catenoids with four ends. The boundaries of these 
ends correspond to the boundaries of the fragments. 

Both kinds of surface patches result in minimal 
balance surfaces which, on the one hand, are com- 
plementary to tP (or oP) surfaces and which, on the 
other hand, may be regarded as tetragonally (or 

Fig. 7. Part of a C(R3) surface spanned by two adjacent nets of 
twofold axes. 
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orthorhombically) distorted C ( P )  surfaces. They will 
therefore be designated tC(P)  (cf. Fig. 8) and oC(P).  
These surfaces are, in addition, complementary to 
MC5 or oMC5 surfaces. The possibility of  tetragonal 
or orthorhombic deformation of C(P)  surfaces has 
not been mentioned by Schoen (1970). 

perforated tubes of a surface run parallel, the inherent 
symmetry of a PT surface is orthorhombic, namely 
Fmmm-Cmmm, regardless of whether its linear ske- 
letal net consists of parallel square or  rectangular 
nets. The genus of PT surfaces is 5. They are com- 
plementary to oP, oMC5 and oC(P) surfaces. 

5. M i n i m a l  b a l a n c e  s u r f a c e s  V/" 

The catenoid-like surface patches of oP surfaces 
allow a second possibility of constructing new surface 
patches. Instead of four spouts one may attach only 
two spouts to each catenoid. Thereby the symmetry 
mmm of the surface patch has to be preserved. Such 
a spout is bounded by one closed plane line of cur- 
vature referring to a mirror plane m.. or .m.. Two 
spouts are combined to a handle. Then each catenoid 
is connected by handles to two other catenoids which 
do not share vertices of the rectangular nets with the 
original one. The set of all catenoids connected by 
such handles is one-dimensionally infinite. It may be 
imagined as a perforated tube, the holes of which are 
formed by the ends of the original catenoids. 

The catenoids with two spout-like attachments are 
the surface patches for a new family of minimal 
balance surfaces designated PT (cf. Fig. 9). As all 

Fig. 8. Part of a tC(P) surface spanned by two adjacent nets of 
twofold axes. 

Fig. 9. Part of a PT surface spanned by two adjacent nets of 
twofold axes. 

6. C o m m o n  propert ies  

A survey of the minimal balance surfaces described 
in this paper  is given in Table 1. The first column 
displays the symbol. In the second column the inher- 
ent symmetry of the surfaces is described by a group- 
subgroup pair of space groups with index 2. In all 
cases this inherent symmetry is the same as for the 
corresponding complementary surfaces built up from 
catenoid-like surface patches. As two surfaces with 
identical inherent symmetry also coincide in all other 
group-subgroup pairs compatible with these surfaces 
it is not necessary to repeat the information listed for 
surfaces with catenoid-like surface patches (Koch & 
Fischer, 1988). Column 3 gives the type of plane nets 
formed by the twofold axes of the generating linear 
net. The genus of the surfaces is listed in column 4. 

Minimal surfaces with linear skeletal nets that dis- 
integrate into parallel plane nets of twofold axes may 
be grouped into three classes depending on the sur- 
face patches that result from cutting the surfaces along 
all the twofold axes of their linear skeletal nets: 

(1) The surface patches may be finite. Examples 
are catenoids, branched catenoids and multiple 
catenoids. The symmetry of such surface patches is 
a point group. 

(2) The surface patches may be one-dimensionally 
infinite. Examples are strip-like surface patches 
(Fischer & Koch, 1989b) and surface patches that 
look like perforated tubes, as described above for PT 
surfaces. The symmetry of such a surface patch is a 
rod group in both cases. 

(3) The surface patches may be two-dimensionally 
infinite. This is the case for all other families of 
minimal balance surfaces described within this paper. 
The symmetry of such a surface patch is a layer group. 

Column 5 describes the symmetry of such infinite 
surface patches, all boundaries of which are twofold 
rotation axes. The layer- and rod-group symbols 
are chosen according to a proposition of Bohm & 
Dornberger-Schiff (1967). 

The last column displays the point-group symmetry 
of the finite surface patches as described above. In 
addition to the twofold axes these surface patches 
are bounded by plane lines of curvature [ C ( H ) ,  
tC(P) ,  PT] or by more general lines, e.g. geodesics. 

In analogy to H, R2, R3, tP and oP surfaces two 
minimal surfaces of the families listed in Table 1 are 
complementary to each other. They can be mapped 
onto one another by a reflection at a mirror plane 
through one of the nets of twofold axes. 
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Table 1. Minimal balance surfaces, built up from catenoids with two, three or four spout-like attachments 

Symmetry of surface patches 
Minimal balance Group-subgroup Nets of Genus 

surface pair twofold axes Infinite Finite 
C(H) P63/mmc-P6m2 63 7 P(6)m2 6m2 
C(R2) 14/recto-P4~ mbm 482 25 P(4/m)bm re.m2 
C (R 3) P6/mcc-P6/m 46.12 37 P(6/m) 11 m.. 
tC( P) 14/mmm-P4/mmm 44 9 P(4/ m)mm 4/mmm 
oC( P) Fmmm-Cmmm 4 4 9 Cmm( m ) mmm 

PT Fmmm-Cmmm 4 4 5 Cm( mm ) mmm 

The existence of C(H) ,  tC(P) and PT surfaces 
can be proved by soap-film experiments. For C(R2), 
C(R3) and oC(P) surfaces such experiments are 
impossible because of the absence of mirror planes 
that bound the finite surface patches. Probably C(H),  
C(R2), C(R3) and tC(P) surfaces exist only within 
a certain range of axial ratios ( c / a ) m i n < - - c / a  < --  

(c/a)max. The soap-film experiments suggest that 
( c / a ) m a x  is larger for C(H) and tC(P) surfaces than 
for H and tP surfaces, i.e. the handles connecting 
the catenoids stabilize the minimal surfaces for large 
c~ a values. For orthorhombic surfaces the ratios b~ a 
and c/a must be examined, b/a describes the shape 
of the rectangles and c/a the distance between the 
nets. In the case of the PT surfaces the soap-film 
experiment shows that handles in the a direction are 

stable only for b~ a >- (b/a ) m i n  > 1. PT surfaces, there- 
fore, are incompatible with square nets. 
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Abstract 

A method for positioning an oriented fragment within 
the unit cell is presented. It is based on a correlation 
between a model and observed data which is per- 
formed in Fourier rather than Patterson space. 
Symmetry-related molecules are located in the elec- 
tron density map calculated in space group P1, with 
the phases derived from a model that is correctly 
oriented but arbitrarily positioned in the unit cell. It 
is shown that considering all symmetry elements 
simultaneously substantially increases the sensitivity 
of the method and makes it less susceptible to the 
errors in the model. The procedure also automatically 
incorporates a penalty for the overlap of symmetry- 
related molecules, and the stringency of this require- 
ment is easily modified. The method has been tested 

* Issued as NRCC Publication No. 30293. 
t To whom all correspondence should be addressed. 
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on two different proteins and the results compare 
favorably with other translation functions. 

Introduction 

Analysis of the architecture of proteins with known 
3D structures (e.g. Rossmann & Argos, 1976; Richard- 
son, 1977, 1981; Chotia, 1984; Janin & Chotia, 1980; 
Chotia, Levitt & Richardson, 1981) indicates that 
their folding pattern is conserved to a much higher 
degree than their amino-acid sequence, and suggests 
that the number of different structural motifs (patterns 
of folding units of a polypeptide chain) in globular 
proteins is relatively limited. Knowing the amino-acid 
sequence of a particular protein, one can obtain some 
information about its structure from a possible 
sequence homology to other proteins with known 
structures. This knowledge can be utilized either for 
building a model of the protein (e.g. Blundell, 
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